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Abstract

We put forward a new approach to mechanism design, and exemplify it via a new mechanism guaranteeing
significant revenue in unrestricted combinatorial auctions. Our mechanism

• succeeds in a new and very adversarial collusion model;

• works in a new, equilibrium-less, and very strong solution concept;

• benchmarks its performance against the knowledge that the players have about each other;

• is computationally efficient and preserves the players’ privacy to an unusual extent.

1 Introduction

A game G consists of a context C and a mechanism M : that is, G = (C,M). The context specifies the players’ types,
all possible outcomes, and the players’ utilities in these outcomes. The mechanism specifies the players’ strategy spaces
and how strategies determine outcomes. Let us explain this for combinatorial auctions.

1.1 Unrestricted Combinatorial Auctions

Recall that a valuation for a finite set of goods G is a function mapping each subset of G to a non-negative real, and
that a profile is a vector indexed by the players.

Combinatorial-Auction Contexts. The context of a combinatorial auction with players 1, . . . , n and non-transferable
goods g1, . . . , gm is defined as follows.

• The players’ types consist of a profile of valuations, TV = TV1, . . . , TVn, called the true valuations. Each valuation
TVi specifies the value that player i truly attributes to any of the 2m subsets of the goods for sale, and is such
that TVi(∅) = 0.

• An outcome Ω specifies who wins which goods and how much everyone pays. Formally, Ω is a pair, Ω = (A,P ):

A, the allocation, is a partition of g1, . . . , gm into n + 1 disjoint sets, A = A0, . . . , An. (A0 represents the set of
unallocated goods, and, for i > 0, Ai represents the set of goods allocated to player i.)

P , the price profile, is a profile of real numbers. (Pi represents the amount player i pays. If Pi is negative, then
−Pi represents the amount i receives.)

• Player i’s utility in an outcome Ω, ui(Ω), consists of his value for the goods he receives, minus the price he pays.
That is: letting Ω = (A,P ), ui(Ω) = TVi(Ai)− Pi.

Combinatorial-Auction Mechanisms. In a typical, normal-form mechanism M for a combinatorial auction, a
player’s strategy σi, also called a bid, consists of a valuation for the goods. (That is, a player’s strategy/type/valuation
space coincide.) The mechanism also specifies a possibly probabilistic function from strategy profiles to outcomes, the
outcome function, denoted too by M for simplicity.
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The mechanism is played in 3 steps: first, each player i (based on his true valuation TVi) privately selects a strategy
σi; second, all players simultaneously announce their selected strategies; third, the outcome function is evaluated on
the announced strategy profile σ = σ1, . . . , σn to yield the final outcome Ω; that is, Ω = M(σ).

Unrestricted Combinatorial Auctions. Combinatorial auctions are very hard, and many restrictions have been
considered in the literature for the players’ true valuations (e.g., additivity, sub-modularity, single-mindedness, etc.)
and the type of goods (e.g., digital goods, for which multiple copies can be made for free, and then sold to multiple
players).

We envisage no such restrictions in our paper, and indeed use the term “unrestricted” to emphasize this fact.

1.2 Traditional Mechanism Design

A mechanism designer wishes to guarantee a given property in a given context. The difficulty is that the designer does
not fully know the context at hand. A context includes the players’ types, knowledge about which, in the purest form
of mechanism design, solely lies with the players themselves. The desired property, however, typically depends on the
players’ types. (E.g., in an auction of a single good, a traditionally desired property consists of allocating the good
to the player who values it the most.) Thus a designer strives to find a mechanism “enticing” rational players, that
is players acting so as to maximize their utilities (expected utilities, in case of probabilistic mechanisms), to de facto
“work for him.” That is, he wants to design a mechanism M such that, for all appropriate contexts C, the desired
property is guaranteed to hold in a rational play of (C,M). Traditionally this means that the property should hold “at
equilibrium.”

Equilibria. An equilibrium is a strategy profile σ such that every player i is better off sticking to his strategy σi if he
believes that all other players stick to theirs. That is, denoting by −i the set of all players but i, a strategy profile σ is
an equilibrium if, for all players i and all alternative strategies σ′i, ui(M(σi t σ−i)) ≥ ui(M(σ′i t σ−i)).

Thus the meaningfulness of an equilibrium crucially depends on the players’ (correct) beliefs. A stronger notion,
solely depending on the players’ rationality (rather than their beliefs), is that of a dominant-strategy equilibrium. This
is a strategy profile σ∗ such that, for every player i, any alternative strategy σ′i for i, and any strategy subprofile σ−i
for the other players: ui(M(σ∗i t σ−i)) ≥ ui(M(σ′i t σ−i)). Thus, in a game with a dominant-strategy equilibrium σ∗,
the best option for any player i is to choose strategy σ∗i , no matter what the other players might do.

Traditional Desired Properties. In a combinatorial auction, two quantities are crucial in an outcome Ω = (A,P ):
the social welfare of Ω, sw(Ω), defined as

∑
i TVi(Ai), and the revenue of Ω, rev(Ω), defined as

∑
i Pi.

Accordingly, one traditionally tries to design combinatorial-auction mechanisms M such that the social welfare
and/or the revenue of M(σ) are high either for some equilibrium σ, or for all equilibria σ. Both social welfare and
revenue are “in expectation” if M is probabilistic.

DST Mechanisms and the VCG. A normal-form mechanism is said to be dominant-strategy truthful (DST for short)
if, for every player i, announcing his own true type is a dominant strategy. In combinatorial auctions, the famous VCG
mechanism [18, 4, 9] is DST and maximizes social welfare.

On input a profile of valuations V , the VCG returns (a) the allocation A maximizing, over all possible allocations
A′,

∑
i Vi(A

′
i); and (b) the price profile P , where each Pi equals the maximum, over all possible allocations A′, of∑

j∈−i Vj(A
′
j) minus

∑
j∈−i Vj(Aj).

1.3 The Case for Resilient Mechanism Design

A manuscript of Micali and Valiant still unpublished, and therefore referred to as “MV” herein, highlights two main
weaknesses of traditional mechanism design, and advocates overcoming them by designing mechanisms in a specific
resilient way. Let us explain.

Weaknesses of Traditional Mechanisms By aiming to achieve a desired property P “at equilibrium,” traditional
mechanism design suffers from two main problems:

1. Equilibrium Selection and
2. Collusion.
The problem of equilibrium selection arises with the existence of multiple “reasonable” equilibria. Indeed, even if M

guarantees that P holds at each possible equilibrium of the game (C,M), if some players believe that the equilibrium
ultimately played out is σ while others believe that it is τ , then the profile of strategies actually selected will be a
mixture of σ and τ rather than an equilibrium, and P may not hold.
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Equilibrium selection is not a problem when P holds at a dominant-strategy equilibrium σ. In this case, in fact,
whether or not other equilibria exist, one can confidently predict σ to be the one actually played out by rational
players. But then, collusion continues to be a problem, because it prevents traditional mechanisms from guaranteeing
their desired property P. Indeed equilibria (even dominant-strategy ones) are very fragile notions: they only imply that
no single player has any incentive to individually deviate from his envisaged strategy, but two or more players may have
all the incentive in the world to jointly deviate from their equilibrium strategies. If they do so, the property P that was
guaranteed at equilibrium, may not hold at all.

The problem of collusion is not only theoretical, but very practical as well. Collusion in auctions is both well
documented, and very disruptive. In particular, as insightfully shown by Ausubel and Milgrom [1], the VCG mechanism,
despite being DST, is totally vulnerable to collusion: even two (sufficiently informed) players may totally destroy its
social welfare. To justify some of the choices of our paper, it is important to recall their counter-example in its simplest
form:

Consider a combinatorial auction with two goods, g1 and g2, three players, 1, 2, and 3, and the following true
valuations: TV1({g1}) = TV2({g2}) = 1, TV3({g1, g2}) = 100 and TVj(S) = 0 in all other cases. For this context,
the allocation giving both goods to player 3 has a social welfare of 100, and is indeed the “best possible.” Because
the VCG is DST, if all players were independent, then the best strategy for them is to bid their true valuations,
so that the VCG allocates both goods to 3 for a price of 2 (the other players pay 0). However, assume that players
1 and 2 collude, and that they know that player 3 values only the two goods together and for at most v (as of
today, v = 1020 should be pretty safe). Then the colluding players are better off bidding the valuations TV ′1 and
TV ′2 , where TV ′i ({gi}) = v and TV ′i (S) = 0 in all other cases. Because player 3, being independent, will continue
to bid his true valuation TV3, the VCG, on input TV ′1 , TV ′2 and TV3, will allocate g1 to player 1 for a price of 0,
and g2 to player 2 for a price of 0 (the price of player 3 will also be 0). Thus, the total social welfare will be 2,
rather than 100 (and the total revenue will be 0). This is so despite the fact that the VCG is a DST mechanism
maximizing social welfare.

The Ausubel-Milgrom example highlights that, although the “best form” of equilibrium, a dominant-strategy equilib-
rium still is an equilibrium, and thus offers no guarantee against collusion. Their same example also highlights that
the VCG mechanism has no guarantee about revenue, even in absence of any collusion. Indeed if TV ′1 , TV ′2 and TV3

respectively were the true valuations of the three players, the VCG would return 0 revenue, despite “strong competition
for the goods.”

MV Resiliency MV proposes two principles to address the above weaknesses:
1′ Dominant-Strategy Truthfulness and
2′ Collusion Neutralization.

Obviously, a DST mechanism dispels any problem of equilibrium selection. Let us thus focus on explaining the second
principle. Collusion neutralization aims at guaranteeing the same performance as when, by magic, all collusive players
disappeared, leaving the mechanism to be run with just the independent players. Ideally, of course, a designer would
prefer to be able to “extract additional performance” from the collusive players, but in light of the Ausubel-Milgrom
example (where just two colluders can ruin any performance whatsoever), neutralizing collusive players is an attractive
goal. According to MV’s second principle, the designer of a mechanism has no responsibility if all players are collusive,
but is fully responsible for satisfying the desired property so long as a single independent player exists. We stress that,
when neutralizing collusive players, not only the designer does not know which players are collusive, but neither do
the independent players. Yet, the designer should guarantee the performance of his mechanism solely by providing a
proper incentive structure.

Although the notion of MV resiliency applies to all kinds of desiderata and contexts, we shall focus on generating
revenue in unrestricted combinatorial auctions.

Ultimately, in combinatorial auctions, the performance of any mechanism can be measured via a benchmark, a
function B mapping any valuation profile V to a real number. To capture collusion neutralization, B should not be
applied to the entire valuation profile V , but just to the valuation subprofile of the independent players, denoted by VI .

Accordingly we say that a mechanism M achieves MV-resiliently a fraction c of a revenue benchmark B if
1′′ M is DST and
2′′ For any true-valuation profile TV , any set of independent players I and any bid subprofile V−I , the revenue M

generates for the profile of bids TVI t V−I is at least c · B(TVI).
Of course such resiliency is interesting only if B and c are both reasonable; and of course, “the higher the fraction c,
the better the mechanism.”
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Revenue Limitations of MV Resiliency Although achievable, MV’s notion of resiliency has severe limitations vis
à vis revenue. Denote by MSW−? the benchmark consisting of the maximum social welfare after removing the “star”
player (that is the one valuing some subset of the goods more than anyone values any subset)1. Then, disregarding
small constants, MV proves the following results about guaranteeing revenue in unrestricted combinatorial auctions:
• There exists a probabilistic mechanism that MV-resiliently achieves a logarithmic (in the minimum of n and m)

fraction of MSW−?; and
• No mechanism MV-resiliently achieves more than that.

Since resiliency looks attractive, but logarithmic fractions do not, we shall build resilient mechanisms of a new type.
Let us emphasize that MV’s revenue upperbound is very meaningful, because it holds for all possible probabilistic

DST mechanisms, not just for those of a special form (such as mixtures of deterministic mechanisms). Accordingly,
there are no more general forms of probabilistic DST mechanisms to explore: we should instead explore new approaches
to resilient mechanism design.

2 Summary of Our Contributions

DST mechanisms may very well be the best way to avoid equilibrium-selection problems. But if we also want to avoid
MV’s revenue upperbound we must choose at least one of the following two alternatives:
A1. Assuming that more knowledge is available (e.g., that the seller has some Bayesian information about the players’

true valuations) or
A2. Adopting a solution concept weaker than dominant-strategy equilibrium.

Actually, in this paper we take both alternatives, but without violating the purest form of mechanism design (i.e., “all
knowledge resides with the players”) and without introducing any equilibrium-selection problem. In other words, we
want to satisfy the spirit of resilient mechanism design, but free it from the specific technical interpretation given by
MV.

In this paper, focussing on revenue, we retain MV’s notion of collusion neutralization, but otherwise provide new
conceptual frameworks and mechanisms.

A New and General Collusive Model We envisage a very adversarial collusion model for the players. (Recall
that in an auction the seller is not a player, and thus we do not envisage player-seller collusion.) In particular, we allow
for any number of collusive players, partitioned into any numbers of collusive sets. We do not restrict the cardinality
of collusive sets, nor the way in which the members of a collusive set coordinate their actions. If they so want, the
members of a collusive set may enter binding agreements on how to act.

We insist, however, that all players be rational, else prediction of players’ behavior and mechanism design itself
would be severely impaired. An independent player, that is a player i not belonging to any collusive set, is individually
rational and acts so as to maximize his traditional utility function ui from outcomes to real numbers. A collusive set
C is collectively rational, that is its members coordinate their actions so as to maximize their own collective utility
function uC , mapping any outcome to a real number.

To maximize meaningfulness, we want the relationship between uC and the individual utility functions of C’s
members to be as general as possible, provided that we do not “transform collusive players into irrational ones.”
(Indeed, what is the difference between a set C of crazy players and a set C of players rationally maximizing a crazy
uC?2) Accordingly, we demand that uC be minimally monotone. Let us explain. Consider two outcomes that are
absolutely identical, as far as C’s members are concerned, except for member i who receives no goods and pays P ′i
(may be negative) in the first outcome, but receives a subset of goods Ai and pays Pi in the second. Then, minimal
monotonicity requires that C prefers the first outcome if −P ′i > TVi(Ai)− Pi, and the second if −P ′i < TVi(Ai)− Pi.3

Minimal monotonicity is of course a restriction on uC , but: (a) it is the only restriction to our otherwise general
collusion model; and (b) it is a very reasonable restriction.4

1For any valuation (sub)profile V , letting the “star” player, ?, be defined as ? = argmaxi maxS⊆G Vi(S), then MSW−?(V ) =
maxA

∑
i∈−? Vi(Ai).

2Indeed, irrational players may be modeled as taking arbitrary actions, and for any actions taken by C’s members, one might find an ad
hoc collective utility function uC so as to rationalize their actions as maximizing that uC .

3For example, a minimally monotone uC may consist of the sum of the individual utilities of C’s members. As for a more eccentric
example, uC may be the sum of: the individual utility of C’s first member, half of the individual utility of C’s second member, a third of
the individual utility of C’s third member, and so on.

4In a sense, since each of them receives exactly the same goods for exactly the same price, the other members of C —if consulted when
choosing uC— should have no reason to object against i’s receiving goods that he values more than his price relative to the case when he
receives nothing. Indeed, they may even demand (additional) side-payments from a happier i!

4



A New Knowledge-Based Benchmark Traditional mechanism design works by leveraging the knowledge that
each player has about himself, but a different and potentially enormous source of knowledge exists: the knowledge
that the players have about each other. Focussing on auctions, each player i not only has internal knowledge, that is
knowledge of his own true valuation TVi, but also some external knowledge, that is some information about TV−i,
the other players’ true valuations. (This is without any loss of generality, since the external knowledge of i may be
“empty.”) We prove that even this external knowledge alone is successfully exploitable, even when the designer has no
information whatsoever about the players.5 Indeed:

A main feature of our approach is to benchmark a mechanism’s performance against the players’ external knowledge.
The external knowledge relevant to our mechanism is “how well each independent player i could sell the goods”

if he were the seller, via take-it-or-leave-it offers to the other players. (That is, i’s relevant external knowledge is the
maximum revenue that i knows he can guarantee via an outcome in which only the players in −i receive goods, everyone
only pays if he receives some goods, and no one pays more than his true value for the received goods.) Accordingly,
initially assuming that the seller is totally ignorant,

Our revenue benchmark is the revenue “known” to the best informed independent player.
Players (e.g., in spectrum auctions) may have quite accurate information about their competitors’ valuations, yet this
source of knowledge was under-utilized in auction design. Aiming at collusion neutralization, we focus on the knowledge
of independent players, and we guarantee nothing when they have no “external knowledge.” (But, in separate papers,
we obtain meaningful results in this setting too.)

A New Solution Concept Although not DST, the mechanism put forward in this paper is immune to any
equilibrium-selection problem. The reason is very simple: it relies on an equilibrium-less solution concept. At a very
high level, it guarantees its goals as long as each player selects a strategy surviving iterated elimination of “essentially
strictly dominated strategies.”

This elimination and our solution concept are somewhat complex because our mechanism is of extensive-form, and
is run in a collusive setting where the players may have little or no information about who colludes with whom, or the
collective utility functions of the collusive sets (if any).

After this iterative elimination process is completed, each player is left with a plurality of surviving strategies, and
ultimately he chooses one of them to play. Accordingly, it is quite possible that the strategy profile actually played is
not an equilibrium at all, yet the mechanism’s goals are achieved just the same: any profile of “not-dumb” strategies
will do. Therefore, what we call implementation in surviving strategies solely relies on common knowledge of rationality,
and not on the players’ beliefs. In such an implementation it is hard to predict precisely which profile of strategies will
be ultimately played. But while “strategy predictability” has always been the cornerstone of traditional mechanism
design, it has always been a mean to an end, not the end itself. Ultimately,

in an auction we do not care about predicting strategies,
but care a lot about predicting revenue (or social welfare).

A New Mechanism We exhibit a new mechanismM for unrestricted combinatorial auctions. Whenever the players
select strategies surviving iterated elimination of dominated strategies, M guarantees, in our general collusion model
and without any information about the players, revenue equal to a half of the revenue known to the best informed
independent player (minus an arbitrarily small ε). Importantly, M is computationally efficient, makes the use of
approximation algorithms compatible with players’ incentives, and preserves the players’ privacy to an unusual extent.

3 Prior Work

Protecting auctions against collusion has so far envisaged either restricted types of collusion or restricted types of
auctions. Notably, group strategy-proof mechanisms [13, 17, 6] are robust only against collusive players unable to
make side-payments to each other. On the other hand, c-truthful mechanisms [7] withstand a general behavior of
collusive players, but are restricted to offer any subset of goods S to any player i for a fixed price pS,i, and thus
cannot produce high revenue unless sufficient information about the players’ true valuations is known in advance to
the designer. Alternative forms of such mechanisms are free to choose more general outcomes (so as to approximate
maximum revenue), but satisfy a weaker notion of collusion resilience and apply to restricted auctions: namely, single

5Of course, auction mechanisms are easier to come by if the designer has suitable information about the players’ true valuations. But
acquiring this information may be too hard. In particular, for auctions of a single good, Cremer and McLean [5] have fully captured the
information structure needed to generate the maximum possible revenue, but concluded that acquiring this information would be too difficult
for their result to be of practical use.
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good in unlimited supply. Resilient mechanisms also exist for a variety of other restricted auctions, in particular those
of [14, 2, 3, 10, 15, 8]. By contrast, we do not impose any such restrictions.

Finally, all the above mechanisms are based on dominant-strategy equilibria. A solution concept closer to ours is
the classical one of implementation in undominated strategies. In essence, in our language, a mechanism M achieves a
property P in undominated strategies if P holds for any outcome obtained by running M on a profile of undominated
strategies. (See Jackson [12] for a formal version.) This notion, however, was never exemplified in any setting of
incomplete information, let alone in auctions. Babaioff, Lavi and Pavlov [2] both proposed a feasible variant of this
notion (in essence, each player can compute his undominated strategies efficiently) and provided the first (and efficient
too) mechanism satisfying it for a restricted type of combinatorial auctions. Namely, their mechanisms applies to
auctions in which each player i has only two possible values for any subset of the goods: either 0 or a fixed value vi. In
sum, the solution concept of [2] requires less rationality than ours, but their mechanism does not address collusion at
all, and does not apply to unrestricted combinatorial auctions.

4 Generalized Contexts and Generalized Auctions

A traditional context for a combinatorial auction can be fully specified by the true-valuation profile TV alone. A
generalized auction context is instead fully described by the tuple (TV, (C, I), u,RKI , GKI), where: TV continues to
be the true-valuation profile, again an original and fundamental object; (C, I) describes the collusion structure, that is
the sets of collusive players and the set of independent players; u describes the generalized utilities, that is the utility of
each agent, that is collusive set or independent player, for each possible outcome; RKI describes the relevant knowledge,
that is the part of the independent players’ knowledge exploited by the mechanism; and GKI describes the general
knowledge, that is all the information available to and exploitable by the independent players. Let us now explain.

4.1 Collusion Structure

In our auctions we envision arbitrarily many collusive sets. Our only restriction is their disjointness. Else, saying that
a collusive set acts rationally becomes more problematic.

Definition 1. (Collusion Structure.) A collusion structure consists of a pair (C, I), where C is a partition of the
players, and I is the set of all players i such that {i} ∈ C.

We refer to a player in I as independent, to a player not in I as collusive, to any C ∈ C of cardinality > 1 as a
collusive set. We use the term agent to denote either an independent player or a collusive set. Since each player i,
collusive or not, belongs to a single set in C, for uniformity of presentation we may denote by Ci the set to which i
belongs. (A collusion structure specifies separately the set I for convenience and clarity only.)

4.2 Generalized Utilities

Definition 2. (Generalized Utility Function.) We say that u is a generalized utility function, for a set of players
with true-valuation profile TV and collusion structure (C, I), if u is a vector, indexed by the subsets in C, of functions
from outcomes to real numbers satisfying the following two properties

1. For all C ∈ C and all outcomes (A,P ) and (A′, P ′) such that (AC , PC) = (A′C , P
′
C): uC(A,P ) = uC(A′, P ′).

2. For all i ∈ I: u{i}(A,P ) = TVi(Ai)− Pi.

We refer to uC as C’s collective utility function. If i ∈ I, we more simply write ui rather than u{i}.

Definition 3. (Minimally Monotone Utilities.) Let u be a generalized utility function for a collusion structure
(C, I). We say that u is minimally monotone if, ∀C ∈ C, ∀j ∈ C, and ∀ outcomes (A,P ) and (A′, P ′) such that

(AC\{i}, PC\{i}) = (A′C\{j}, P
′
C\{j}) and A′i = ∅,

we have:
uC(A,P ) ≥ uC(A′, P ′) if and only if TVi(Ai)− Pi ≥ −P ′i .

4.3 Our Relevant Knowledge and Benchmark

Definition 4. (External and Relevant Knowledge.) Let i be an independent player in a combinatorial auction
setting with true-valuation profile TV and collusion structure (C, I). Then, i’s external knowledge, denoted by EKi, is
the set of all outcomes (A,P ) satisfying three properties:
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1. External Sale Only. Ai = ∅ and Pi = 0.
2. No Donation. Pj is a positive integer whenever Aj 6= ∅.
3. Known Feasibility. Pj = 0 if Aj = ∅; else, it is known to i that Pj < TVj(Aj).

The relevant knowledge of i, denoted by RKi, is defined to be the outcome in EKi having maximum revenue; that is,

RKi = argmax
Ω∈EKi

rev(Ω).

Notice that any outcome Ω in EKi is a way for i to “offer the goods to the other players.” Indeed, property 1
guarantees that Ω offers non-empty subsets of the goods only to players other than i. Moreover, property 3 guarantees
to i that, so long as the generalized utility function is minimally monotone, each offer in Ω will be (rationally) accepted.
Thus, Ω essentially is a guaranteed way for i to generate revenue rev(Ω) by selling the goods to the other players,
no matter what the minimally monotone generalized utility function u may be. Property 2 is a technical requirement
with two purposes. The fact that “Pj is positive” is used in our mechanism. (Our mechanism incentivizes players to
get some goods for free by providing their relevant knowledge to the seller, and property 2 prevents them from getting
goods for free by relying on other players.) The fact that “Pj is an integer” ensures that RKi is well defined. (If EKi

had infinite cardinality, the outcome with the maximum revenue may not exist.) Of course, if breaking ties proves
necessary, RKi is chosen to be the lexicographically first outcome with maximum revenue.

Definition 5. (The MEW Benchmark.) In a generalized context with independent player set I, the best informed
player in I, bip(I), is so defined:

bip(I) = argmax
i∈I

rev(RKi).

And the maximum external welfare benchmark is so defined:

MEW(RKI) = rev(RKbip(I)).

Notice that the known-feasibility property of RKi guarantees that our benchmark consists of “true knowledge.” (In
future papers we shall also consider benchmarks based on players’ beliefs rather than true knowledge.)

4.4 General Knowledge

Definition 6. In a combinatorial auction setting with true-valuation profile TV , collusion structure (C, I), and gen-
eralized, minimally monotone utility function u, the general knowledge of an independent player i, denoted by GKi,
consists of (TVi, the fact that i ∈ I, and) all the information about TV−i, (C, I), and u−i, known to i.

Of course, GKi and RKi must be compatible with each other. In a sense, RKi should be properly deduced from
GKi. Let us consider two examples.

1. GKi consists of a subset of V−i (the set of all possible valuation subprofiles for the players in −i) such that
TV−i ∈ GKi. That is, GKi is the set of all possible candidates, in i’s opinion, for the other players’ true
valuations. Such GKi is genuine in the sense that one of its candidates is the “right one.”6 In this example,
RKi is deduced from GKi in two conceptual steps. First, for each valuation subprofile V ∈ GKi, one computes
EKV

i , the set of all outcomes satisfying properties 1, 2, and 3 of Definition 1 assuming that TV−i = V . Then, one
computes EKi, the intersection of all EKV

i ’s. Third, one computes RKi from EKi as usual. (Thus, if GKi = V−i,
then RKi is the null outcome.)

2. GKi consists of a “partial” probability distribution over V−i.7 For instance, starting with a distribution D
assigning positive probability to the actual subprofile TV−i, GKi is derived from D as follows: if the probability
pV of a subprofile V ∈ V−i is positive, then pV is replaced with a subinterval IV of [0, 1] that includes pV .
(IV = [0, 1] is interpreted as i knowing “nothing” about profile V .) In this case, one first computes EKV

i , as in
example 1, for each valuation subprofile V whose subinterval does not coincide with [0, 0], and then computes
EKi and RKi accordingly.

Why also considering GKi if our mechanism uses RKi?
6Notice that GKi = V−i expresses the fact that i knows “nothing” about TV−i. Also notice that a proper choice of GKi can precisely

express pieces of i’s external knowledge such as “player h’s valuation for subset S is larger than player j’s valuation for subset T .”
7Of course, GKi could more simply specify the true probabilistic distribution from which TV−i is drawn, but considering it as a partial

probability distribution is more general.
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The reason is: meaningfulness. Indeed, after a mechanism is chosen, the players will rationally act relying on all
the knowledge available to them, not just the one that the mechanism relies upon. And by relying on their general
knowledge, they may act quite differently than the “mechanism wants.” Accordingly, to enhance the meaningfulness of
our results, we do not restrict the players’ general knowledge at all. That is,

Our mechanism achieves our relevant-knowledge benchmark for all possible (but compatible!) general knowledge
of the independent players.

We are fully aware, of course, that better performance could be guaranteed by assuming some suitable restriction for
the players’ general knowledge. And some of these restrictions may be very realistic and profitable in some future
contexts.

4.5 In Sum

Definition 7. We say that a generalized auction context C = (TV, (C, I), u,RKI , GKI) is minimally monotone if u is
minimally monotone and this fact is common knowledge.

We say that (C ,M) is a (minimally monotone) generalized auction if M is a mechanism, and C a (minimally
monotone) generalized context.

If C is a minimally monotone generalized context whose components have not been explicitly specified, then by
default we assume that C = (TV C , (CC , IC ), uC , GKC

I , RK
C
I ).

Remarks Although deducible from the subprofile GKI , RKI is explicitly part of the generalized context for clarity.
In this paper, an independent player i’s relevant knowledge is non-Bayesian, even when his general knowledge is

Bayesian: that is, RKi always is a way known i to sell the goods to the other players that succeeds with probability
1, whenever the other players are rational. When player i’s relevant knowledge is a probability distribution over V−i
more care is needed (the subject of a separate paper).

A generalized context does not define the knowledge of collusive players for two reasons. First, even if each player
had his own general knowledge, the “general knowledge of a collusive set C may be hard to predict.” (In principle there
is no way to guarantee that C’s members truthfully reveal their general knowledge to each other. For instance, if C
arose from an initial negotiation, then a member i of C might have had incentives to lie about his knowledge in order
to enter C and/or influence in his favor the choice of uC .8) Second, we do not need any assumption on the collusive
players’ general knowledge to achieve our results. The minimal monotonicity of the generalized utility function is all
we require.

(Although each GKi has been defined to consist of information about TV−i, (C, I) and u, it might also include
information about the other players’ knowledge.)

5 Our Solution Concept

Implementation in surviving strategies may already be useful in much simpler settings —e.g., settings with complete
information and without collusion— and might perhaps benefit from a more gradual presentation. To avoid excessive
overlapping, however, we choose to present it directly for the setting at hand: combinatorial auctions with secret
valuations and collusive players. We actually focus on a refinement of our solution concept maximizing our mechanism’s
meaningfulness.

Implementation in Σ1/Σ2
I Strategies In practice, there seem to be different levels of rationality. That is, many

players are capable of completing the first few iterations of elimination of “inferior” strategies, but fail to go “all the
way.” Accordingly, one should prefer mechanisms that guarantee the desired properties for any vector of strategies
surviving just the first few iterations. Our mechanism achieves our benchmark for any vector of strategies surviving
the following two-round elimination process. First, each agent removes all its distinguishably dominated strategies
(DD strategies for short), as defined below. Then, each independent player further removes all strategies which now
become distinguishably dominated. Since in the case of other types of iterative eliminations (e.g., of strictly dominated
strategies) it is common to refer to the set of strategy profiles surviving the first iteration as Σ1, and to that surviving
the first two iterations as Σ2, we call this refinement of our solution concept implementation in Σ1/Σ2

I Strategies.
Let us now provide a bit more motivation for our elimination process. Once a mechanism M is specified, a player

i needs to choose a strategy for himself. If i has a single strictly dominant strategy, this choice is easy. Most of the
8Perhaps better results may be obtained by restricting the collective knowledge (or the process of coalition formation) but these possi-

bilities are not investigated in this paper.
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time, however, such a strategy of i does not exist. When this is the case, i should refine his strategy set by eliminating
at least some of his strategies, that is, he should identify some strategies he should never play. To better refine his
strategies, i may also need to refine his opponents’ strategy sets, relying on his own general knowledge and the common
knowledge of rationality. Of course, many such strategy-refining processes P exist. But we only want those satisfying
the following informal properties:

1. Mechanism Usefulness. After each player ends his own execution of P, M must achieve its desired property for
any profile of strategies σ (not necessarily an equilibrium!) such that each σi belongs to i’s refined strategy set.

2. Player Safety. If i eliminates (in his mind) a strategy σj of an opponent j, then a rational j will never play σj .
If i eliminates a strategy σi from his own set, then he will never regret this elimination.

(Note that such an elimination procedure P needs not be “maximal:” for what we care, it can “stop as soon as Property
1 holds.” For instance, if the iterated elimination of all strictly dominated strategies whose binary representation starts
with 0 satisfied mechanism usefulness, we would be satisfied. Note too that finding such a P might be easier if the
players were perfectly informed about each other. But in our setting they have imperfect knowledge about each other.)

The strategy-refining procedure formalized below satisfies Properties 1 and 2 even in the presence of collusion and
with imperfect player knowledge. Indeed, whether a strategy is distinguishably dominated depends on additional factors
(such as the collusive sets actually present and their collective utility functions) about which an agent may not have
any information beyond what it knows about itself. In particular, some independent players may not know that there
are collusive players, while other players (independent or not) may have different knowledge about the actual collusive
sets and their collective utility functions. We thus insist that each eliminated strategy for an agent A must never be
played by a rational A, no matter what knowledge it may have (i.e., in any generalized context compatible with A’s
knowledge). This of course cannot but increase the number of surviving strategy vectors. Yet, it will not be a problem
as long as we can guarantee our benchmark for all such vectors.

Before formalizing our notions, let us quickly recall the type of mechanisms we use, and some needed notation.

Extensive-Form Public-Action Auction Mechanisms. We focus solely on auction mechanisms of extensive form.
Thus our mechanisms must specify the decision nodes (of a game tree), the player(s) acting at each node, the set of
actions available to each acting player at each node, and the auction outcome (i.e., the allocation A and the price profile
P ) associated to each outcome node (i.e., each terminal node —leaf of the game tree). Our mechanisms may actually
specify multiple players to act simultaneously at some decision nodes. Our mechanisms also are of public action: that
is, each action becomes common knowledge as soon as it is played.9

A player i’s strategy specifies i’s action at each decision nodes in which i acts. A play of a mechanism M consists
of a profile of strategies. If σ is such a play, then
• H(σ) denotes the history of the play, that is the outcome node finally reached by executing M when each player

chooses his actions according to σi. (Equivalently, H(σ) is the sequences of decision nodes reached during the
execution.)
• M(σ) denotes the auction outcome (A,P ) associated to H(σ).

IfM is probabilistic, then bothH(σ) andM(σ) are distributions, respectively over node outcomes and auction outcomes.

Formalization. Denoting the set of all deterministic strategies of a player i by Σ0
i , the set of all deterministic strategy

profiles by Σ0, the set of all deterministic collective strategies of a collusive set C by Σ0
C , the set of all deterministic

strategy vectors of a generalized context C by Σ0
C , and the Cartesian product by

∏
, we have

Σ0 =
∏
i Σ0

i , Σ0
C =

∏
i∈C Σ0

i , and Σ0
C = Σ0.10

Definition 8. (Σ1 Strategies.) Let (C ,M) be a generalized auction, Σ′ a set of deterministic-strategy vectors for
(C ,M), A an agent in (C ,M), and σA and σ′A two strategies of A in Σ′A. We say that σA is distinguishably dominated
(by σ′A) over Σ′ if

1. ∃τ−A distinguishing σA and σ′A over Σ′; that is, τ−A ∈ Σ′−A and H(σA t τ−A) 6= H(σ′A t τ−A);11 and
2. E[uA(M(σA t τ−A))] < E[uA(M(σ′A t τ−A))] for all subvectors τ−A distinguishing σA and σ′A over Σ′.

9We refrain from using the more standard term “perfect-information” to avoid confusion. Our setting is in fact of “incomplete informa-
tion.” That is, a player’s true valuation is not exactly known to his opponents. And mechanisms of “perfect information and incomplete
information” would be too much...

10Indeed, the latter equality follows because Σ0
C =

∏
C∈CC Σ0

C =
∏

C∈CC

∏
i∈C Σ0

i = Σ0.
11If M is probabilistic, then H(σA t τ−A) and H(σ′A t τ−A) are distributions over node outcomes, and the inequality means that the two

distributions are different.
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If Property 1 does not hold, σA and σ′A are called equivalent over Σ′. A strategy not distinguishably dominated over Σ′

is called undominated over Σ′. We define the sets Σ1
A,C and Σ1

C as follows:

• Σ1
A,C is the set of strategies in Σ0

A,C that are undominated over Σ0
C .

• Σ1
C =

∏
C∈CC Σ1

C,C .

Note that each Σ1
A,C is uniquely defined up to “renaming/removing” equivalent strategies.

Definition 9. (Compatibility.) A context C

• is compatible with an independent player i if TVi = TV C
i , i ∈ IC , RKi = RKC

i , and GKi = GKC
i

• is compatible with a collusive set C if C ∈ CC and uC
C is C’s collective utility function.

Note that, fixing the mechanism M , we have
(1) Σ1

A,C is the same for any C compatible with A. In fact, the set Σ0
C (= Σ0) is fully determined from M alone, and

which strategies of A are undominated over Σ0 solely depends on A’s utility function (rather than, say, on the
partition of the other players into collusive sets, and their utility functions). Accordingly, we shall more simply
write Σ1

A instead of Σ1
A,C , and thus Σ1

C =
∏
C∈CC Σ1

C .

(2) Σ1
C is crucially dependent on C . In fact, although the set of undominated strategies of each agent is “independent

of the overall collusive context”, a set of players C may be an agent in a collusive context C , but not in another
context C ′. (For instance, C may consist only of independent players in C ′. In this case, let 10 be the number
of players in C. Then, in C , Σ1

C may consist of a single collective strategy. While in C ′, each independent player
may have 2 uneliminated strategies, so that Σ1

C consists of 1024 strategy subprofiles.)

Definition 10. (Σ2
I Strategies and Σ1/Σ2

I Plays) Let i be an independent player in a generalized auction. Then,
• We say that a strategy σi ∈ Σ1

i is globally dominated if there exists a strategy σ′i ∈ Σ1
i such that, for all generalized

contexts C compatible with i, σ′i distinguishably dominates σi over Σ1
C .

• We denote by Σ2
i the set of strategies in Σ1

i which are not globally dominated.
• We say that a strategy vector σ is a Σ1/Σ2

I play of a generalized auction (C ,M) if

σ ∈
∏
i∈IC

Σ2
i ×

∏
C∈CC ,|C|>1

Σ1
C .

Definition 11. (Implementation in Σ1/Σ2
I Strategies.) Let P be a property of auction outcomes, and M an

auction mechanism. We say that M implements P in Σ1/Σ2
I strategies if, for all generalized contexts C , and all Σ1/Σ2

I

plays σ of the auction (C ,M), P holds for M(σ).

Remarks Note that Σ2
i has been obtained by eliminating Σ1

i strategies that are distinguishably dominated in a very
strong sense. A player having more information about the real context might be able to eliminate more strategies, and
thus further refine Σ2

i .
If M is probabilistic, then M(σ) is a distribution over outcomes, and P a property of outcome distributions.

6 Our Mechanism

Although requiring some modifications, the basic idea behind our mechanism is very simple: each player i, simulta-
neously with the others, announces an outcome Ωi = (αi, πi) satisfying properties 1, 2, and 3 of Definition 1, except
that we do not require that πij < TVj(αij) whenever αij 6= ∅. Let ? be the “star player”, that is the one who has
announced the outcome with the highest revenue. Then, we try to sell the goods according to Ω?, so as to generate
revenue R? = rev(Ω?). That is, we ask each player i ∈ −?, receiving some goods in α?, whether he is willing to buy
the subset of goods α?i for price π?i . If i agrees, the subsale is final. Else, the star player pays a fine equal to π?i and
the goods in α?i remain unallocated.

Note that the star player may not be the best informed independent player, but our benchmark is achieved if each
independent player i does not “underbid”, that is, if he announces an outcome whose revenue is at least as high as that
of RKi. Thus: can we ensure that an independent player i does not underbid? The problem is that, depending on the
generalized context, underbidding may be the best thing to do. For instance the context may be such that (1) player i is
the best informed player; (2) the second best informed player is j; and yet (3) player j is badly informed about player
i: that is, RKj allocates to i a subset of goods Si that i highly values for a ridiculously low price. In this case, i would
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be better off if j announced RKj and were the star player. In sum, underbidding may be far from being a dominated
strategy.

To guarantee that rational independent players do not underbid, we adopt a two-pronged strategy.
First, our mechanism modifies the above basic procedure as follows. Together with RKi, each player i also announces

his (suppositively) favorite subset of the goods, Si. If i is declared the star player, then a coin toss of the mechanism
determines whether the above basic procedure takes place or i receives Si for free, and all other goods remain unallocated.

Second, the mechanism gives back to the players some amount of revenue: in particular, a fixed small amount,
0 < ε < 1. Each player i actually gets a fraction of ε proportional to the revenue of his announced Ωi. (Formally, this
enables us to avoid any ambiguity about relying on “weakly dominated strategies” in our solution concept.)

A precise analysis proves that, for all independent players, underbidding does not survive the iterated elimination
of distinguishably dominated strategies. The same cannot be said about collusive players, but then we do not rely on
them for revenue. However, we must ensure that they do not hurt the achievement of our benchmark.

(In M’s description below, real actions occur in “numbered steps” and public updates in “bulleted steps.”)

Mechanism M

• Set Ai = ∅ and Pi = 0 for each player i.

1. Each player i simultaneously and publicly announces (1) an outcome Ωi = (αi, πi) such that αii = ∅, πii = 0, and
πij is 0 whenever αij = ∅ and a positive integer otherwise; and (2) a subset Si of the goods.

• Set: Ri = rev(Ωi) for each player i and ? = argmaxiRi. (We shall refer to player ? as the “star player.”)

2. Publicly flip a fair coin.

• (If Heads:) reset A? := S? and HALT.

3. (If Tails:) Each player i such that α?i 6= ∅ simultaneously and publicly announces YES or NO.

• Reset:

(1) for each player i announcing NO, P? := P? + π?i ;

(2) for each player i announcing YES, Ai := α?i

and Pi := π?i ; and

(3) for each player i, Pi := Pi − εRi
1+

∑
j Rj

.

7 Analysis of Our Mechanism M

Our mechanism M and its analysis assume that a player’s true valuation maps subsets of the goods to non-negative
numbers (but we could handle negative valuations as well).12 In the analysis below, all individual strategies, collective
strategies, and vectors of strategies are relative to M.

Three Lemmas. Our result follows from the three intuitive but technical lemmas below, proved in our appendix.

Lemma 1. For all independent players i and all σi ∈ Σ1
i : if i 6= ? and α?i 6= ∅ after Stage 1, then in Stage 3 (that is,

when M’s coin toss comes up Tails)
1. i answers YES whenever TVi(α?i ) > π?i , and
2. i answers NO whenever TVi(α?i ) < π?i .

Lemma 2. For all minimally monotone collusive sets C and all σC ∈ Σ1
C : if ? 6∈ C after Stage 1, then in Stage 3, for

all players i in C,
1. i answers YES whenever α?i 6= ∅ and TVi(α?i ) > π?i , and
2. i answers NO whenever α?i 6= ∅ and TVi(α?i ) < π?i .

12In traditional auctions, valuations are bids, and the seller would immediately dismiss bids associating a subset S of the goods to a
negative number (since he has no intention to assign S to a player and also pay him to accept S). The “bidding process” of our mechanism
however asks each player i to announce in Step 1 a subset Si of the goods without mentioning any value for Si. In principle, therefore, i
may have a negative valuation for Si. And leaving things as they stand, i may have (subtle) reasons to announce such an Si.
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Lemma 3. ∀ independent player i and ∀ σi ∈ Σ2
i ,

rev(Ωi) ≥ rev(RKi) (that is, i does not “underbid”).

Notice that, while ruling out underbidding (relative to RKi) for independent players, our lemmas say nothing about
the possibility of “over-bidding.” In fact, not only over-bidding needs not be distinguishably dominated, but even be
the rational thing to do for some independent players —it all depends on their general knowledge.13

Fortunately, our main theorem guarantees that we achieve our revenue benchmark whether or not over-bidding is
dominated for all independent players.

Main Theorem

Theorem 1. For all minimally monotone generalized contexts C and all Σ1/Σ2
I plays σ of (C ,M), we have

E[rev(M(σ))] ≥ MEW(RKI)− ε
2

.

Proof. By Definition 2, bip(I) is the independent player “realizing” our benchmark: that is,

bip(I) = argmax
i∈I

rev(RKi).

Notice that players bip(I) and ? may not coincide, and that the following two inequalities hold in any Σ1/Σ2
I play of

(C ,M):
(a) rev(Ωbip(I)) ≥ rev(RKbip(I)) = MEW(RKI).
(b) R? ≥MEW(RKI).

Indeed, Inequality (a) holds because player bip(I) is independent and, by Lemma 3, he does not underbid; and Inequality
(b) holds by Inequality (a) and the fact that R? ≥ rev(Ωbip(I)) by the definition of ?.

Notice that M generates revenue only when its coin toss comes up Tails, and when this happens, the revenue
generated coincides with R?, because for each player i such that π?i > 0, the seller receives π?i , from i if i announces
YES, and from ? if i announces NO. Therefore for any σ ∈ Σ1/Σ2

I , the following equality holds for M’s expected
revenue:

(c) E[rev(M(σ))] >
R? − ε

2
,

because the total “rebate” given to all players in the last step is < ε. Inequalities (b) and (c) imply our thesis.
Q.E.D.

8 Additional Properties of M

Privacy and Deniability/“Tax Freeness” Although traditionally irrelevant to mechanism design, the privacy
that a mechanism provides to its players is important.

Consider a second-price auction of a single good where the highest true valuation for the good is $10M, and the
second highest is $1M. Since the second-price mechanism is DST, we expect the players to bid their true valuations,
so that the winner bids $10M and pays $1M. Assume, however, that the auction takes place in a country with an
overreaching and tyrannical tax code, where the Internal Revenue Service is allowed to collect taxes on “auction
utilities.” (After all, even lottery gains are taxable in many countries!) In such a country, our winner would own taxes
over $9M. Indeed, unless he pleads “temporary insanity”, acting rationally in a DST mechanism, he himself has freely
admitted to a utility of $9M. In such a country, therefore, it is not clear whether the players will bid truthfully in the
second-price mechanism. Consider now selling the same good, to the same players and in the same country, via an
ascending English auction. In such an auction truthful bidding is not endangered by the tax code: the players who
“drop out” reveal their true valuations but are not “taxable” because they have no utility, while the winner never
reveals his true valuation, so that he could always credibly deny to value the good for more than what he pays. Beyond
tax advantages, players value their privacy, and the fact that ascending English auctions preserve the privacy of the
winner perhaps provides an additional explanation of why they are more used than the second-price auctions.

13For example, assume that the relevant knowledge RKi of an independent player i specifies allocating to a player j a subset of the
goods S for a price pj . However, i’ general knowledge GKi may include some Bayesian information according to which the probability that
TVj(S) > 100pj is extraordinarily high, although not equal to 1. In such a case, to maximize his chance of becoming the star player, i may
be better off risking a possible answer NO from j and announce an outcome Ωi allocating S to j for a price 100pj .
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Our mechanism provides even more deniability/“tax advantages” than ascending English auctions, even when it
deals with multiple goods for sale. A player receiving some goods never declares how much he values them. If M’s
coin ends up Heads, then the star player receives for free his favorite subset S, but never says anything himself about
his own valuation for S. (Whatever the other players say about him could be just “hearsay,” and over-bidding is not
dominated for them.) IfM’s coin ends up Tails, then every player who answers YES receives goods that he may always
claim to value for exactly what he was offered to pay and indeed paid. In addition our mechanism preserves, to a very
large extent, also the privacy of the players who do not receive any goods at all. (And with proper use of envelopes,
our mechanism would reveal even less information, without having to trust the auctioneer.)

In sum, loss of privacy may alter the way games are played, and mechanisms should be designed so as to preserve as
much privacy as possible. In particular we believe that being “tax-free” is a crucial property of an auction mechanism.

(A general result of Izmalkov, Lepinski, and Micali [11] guarantees that every normal-form mechanism has an
extensive-form version that perfectly implements it, in particular without any privacy loss. Note, however, that their
construction —although feasible— is practically inconvenient. By contrast, our mechanism M offers a lot of privacy
“for free!”14)

Computational Efficiency Although traditionally neglected in mechanism design, the computational efficiency of
a mechanism is important too.

Unlike the VCG, that requires solving NP-hard problems, our mechanism M is computationally trivial. Indeed,
after each player i reports his Ωi, M needs only to sum up the prices in each Ωi and figure out the outcome with the
largest and second-largest revenues.

One might object, however, thatM transfers all hard computations to the players themselves. Not quite so, because:
1. Computing the relevant knowledge might be easy: it all depends on the form of general knowledge. (In the extreme,

if RKi coincides with GKi, there is nothing for player i to compute.)
2. Each player i can always use an efficient algorithm to approximate RKi without altering any incentives.

Let M be a DST auction mechanism whose outcome function f , as for the VCG, is very hard to compute. Then, the
auctioneer could not use any feasible approximation f ′ of f , because the so modified mechanism M ′ may no longer be
DST! By contrast, in ourM, it is in each independent player i’s best interest to report his best possible approximation
to RKi known to him. (Because reporting an outcome known to i to be feasible dominates reporting any outcome
with a lower revenue.) Thus, while for the VCG approximation distorts incentives, for ourM approximation is aligned
with incentives. Putting it differently, assume that RKi is really hard to deduce from GKi, and that an auction using
mechanismM is announced in two weeks time. Then, after computing day and night for two weeks, each independent
player i can only report an approximation to his true RKi. Yet, M still achieves our benchmarks, not defined on the
perfect relevant knowledge, but on the relevant knowledge actually known to the players at the time of the auction.

9 Variants and Extensions

Our mechanism relies on rewarding the players by giving them back a fixed and small “rebate” ε. Keeping on the spirit
of M there are several alternatives for rewarding the players. In particular, one may consider rewards as percentages
of the revenue collected. As for another alternative, one may consider rewarding the star player, when the coin toss
ends up Tails, with the difference between R? and the “second-highest revenue.” (Of course these alternatives reduce
our revenue benchmark. However the “sum of social welfare and revenue” will not be affected.)

So far, we have assumed that the seller/designer knows nothing about the players. But it is easy to accommodate
a designer having some knowledge about the players. For instance, this knowledge may —in keeping with our overall
approach— be modeled as an outcome Ω which he knows to be “realizable.” In particular, if R? is smaller than rev(Ω),
then the mechanism tries to sell the goods according to Ω.

Our approach yields significantly better results for simpler auctions, in particular auctions of multiple copies of a
single good. Here, in a forthcoming paper, not only we show that it is possible to achieve higher knowledge-benchmarks,
but also that it is possible to aggregate the knowledge of all players into a greater total collective knowledge. In particular,
in the case of a single copy of a single good, we can guarantee revenue that is at least equal to that of the second-price
mechanism and possible significantly higher if the players are well informed about each other.

In this paper we benchmark against the “guaranteed” knowledge that the players have. In a forthcoming paper
with Avinatan Hassidim we shall prove that stronger results are possible in a more conservative Bayesian setting, that

14Also note that M could provide further privacy if it first asked each player i to announce just the revenue of Ωi in Stage 1, and then
asked only the star player to reveal both Ω? and S?. However, this alternative way of proceeding would enable the star player to announce
Ω? depending on the revenues announced by the other players, and thus an independent player i may have incentives to underbid.
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is, assuming that the players (rather than the designer!) know the distribution from which their true valuations are
drawn. This is more in line with the true spirit of mechanism design, where all knowledge lies with the players.

In this paper we show that it is possible to leverage the external knowledge of the independent players. In a most
recent result with Paul Valiant, we shall prove that, even in unrestricted combinatorial auctions, it is possible to leverage
both the internal and external knowledge of all players, including the collusive ones. (By a player’s internal knowledge
we mean his own true valuation.) The result assumes a slightly weaker collusion model and solution concept.

Beyond auctions, our approach also applies to other settings of mechanism design, such as provision of a public good
(where all prior mechanisms were highly vulnerable to collusion, and in a way much more overt than in the VCG case).
Indeed, we initiate indirect mechanism design, a new approach that, with new “strategy spaces,” beyond the scope of
the revelation principle, bypasses problems of incentive compatibility, computational complexity, and collusion.
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Appendix

A Proofs of Our Three Lemmas

Let us recall and prove our three lemmas.

Lemma 1. For all independent players i and all σi ∈ Σ1
i : if i 6= ? and α?i 6= ∅ after Stage 1, then in Stage 3 (that is,

when M’s coin toss comes up Tails)
1. i answers YES whenever TVi(α?i ) > π?i , and
2. i answers NO whenever TVi(α?i ) < π?i .

Proof. We restrict ourselves to just prove, by contradiction, the first implication (the proof of the second one is totally
symmetric). Assume that there exist an independent player i and a strategy profile σ such that (1) σi ∈ Σ1

i and
σ−i ∈ Σ0

−i, and (2) in the execution of σ, i answers NO in Stage 3 and the following property holds:
Pi : i 6= ?, α?i 6= ∅, and TVi(α?i ) > π?i .
Then, denoting by Pi the negation of Pi, that is,
Pi : i = ?, or α?i = ∅, or TVi(α?i ) ≤ π?i ,
consider the following alternative strategy for i:

Strategy σ′i

Stage 1.Run σi (with stage input “1” and private inputs
TVi and GKi) and
announce Ωi and Si as σi does.

Stage 3. If Pi, continue running σi and answer whatever
σi does.15

If Pi, answer YES.

We derive a contradiction by proving that σi is distinguishably dominated by σ′i over Σ0, which implies that σi 6∈ Σ1
i .

Notice that M(σi t τ−i) = M(σ′i t τ−i) for all subprofiles τ−i ∈ Σ0
−i such that the execution of σi t τ−i either

satisfies (1) Pi, or (2) Pi and i answers YES in Stage 3. This is so because for such τ−i the executions of σi t τ−i
and σ′i t τ−i coincide, and so do their outcomes whenever the coin toss of M is the same. Therefore such τ−i’s do not
distinguish σi and σ′i over Σ0. To prove that σi is distinguishably dominated by σ′i over Σ0, it suffices to consider the
strategy subprofiles τ−i ∈ Σ0

−i such that the execution of σi t τ−i satisfies Pi and i announces NO in Stage 3. Notice
that, by assumption, τ−i = σ−i is one such subprofile.

For all such τ−i, observe that, since σ′i coincides with σi in Stage 1, the outcome profile Ω is the same in the
executions of σit τ−i and σ′it τ−i. Accordingly, Rj is the same in both executions for each player j, and the star player
too is the same in both executions. Since (by hypothesis) the execution of σi t τ−i satisfies Pi, so does the execution
of σ′i t τ−i.

We now distinguish two cases, each occurring with probability 1/2.
(1) M’s coin toss comes up Heads.

In this case, because only the star player receives goods, we have: Ai = ∅ and Pi = 0 in both executions, and

ui(M(σi t τ−i)) = ui(M(σ′i t τ−i)) = 0.

15The first implication of Lemma 1 specifies that i 6= ? and TVi(α
?
i ) > π?

i . However, a strategy must be specified in all cases, and thus

σ′i must be specified also when Pi.
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(2) M’s coin toss comes up Tails.
In this case, because by hypothesis,
(a) TVi(α?i ) > π?i ,
(b) player i answers NO in the execution of σi t τ−i and
(c) i answers YES in the execution of σ′i t τ−i,
we have: Ai = ∅ and Pi = − εRi

1+
∑
j Rj

in the execution of σi t τ−i, Ai = α?i (6= ∅) and Pi = π?i − εRi
1+

∑
j Rj

in the
execution of σ′i t τ−i,

ui(M(σi t τ−i)) = TVi(∅)− Pi =
εRi

1 +
∑
j Rj

, and

ui(M(σ′i t τ−i)) = TVi(α?i )− Pi = TVi(α?i )− π?i +
εRi

1 +
∑
j Rj

>
εRi

1 +
∑
j Rj

.

Combining the above two cases yields:
(a) M(σi t τ−i) 6=M(σ′i t τ−i), since the two outcome distributions differ at Ai.
(b) E[ui(M(σi t τ−i))] < E[ui(M(σ′i t τ−i))].

Therefore σi is distinguishably dominated by σ′i over Σ0.

Lemma 2. For all minimally monotone collusive sets C and all σC ∈ Σ1
C : if ? 6∈ C after Stage 1, then in Stage 3, for

all players i in C,
1. i answers YES whenever α?i 6= ∅ and TVi(α?i ) > π?i , and
2. i answers NO whenever α?i 6= ∅ and TVi(α?i ) < π?i .

Proof. We again restrict ourselves to just prove the first implication, and proceed by contradiction. Assume that there
exist an minimally monotone collusive set C, a player i ∈ C, and a strategy vector σ such that σC ∈ Σ1

C , σ−C ∈ Σ0
−C ,

and in σ’s execution i answers NO in Stage 3 and the following property holds:
Pi,C : ? 6∈ C, α?i 6= ∅, and TVi(α?i ) > π?i .

Then, denoting by Pi,C the negation of Pi,C , that is,
Pi,C : ? ∈ C, or α?i = ∅, or TVi(α?i ) ≤ π?i ,

consider the following alternative collective strategy for C.

Strategy σ′C

Stage 1.Run σC and announce Ωj and Sj as σC does
for all j ∈ C.

Stage 3. If Pi,C , continue running σC , and announce
whatever σC does for all j ∈ C.
If Pi,C , continue running σC , and announce YES for i
and whatever σC does for all j ∈ C \ {i}.

We derive a contradiction by proving that σC is distinguishably dominated by σ′C over Σ0, which implies σC 6∈ Σ1
C .

Similar to Lemma 1, to prove that σC is distinguishably dominated by σ′C over Σ0, it suffices to consider all strategy
subvectors τ−C ∈ Σ0

−C such that the execution of σC t τ−C satisfies Pi,C and i answers NO in Stage 3. Notice that
by hypothesis, τ−C = σ−C is one such strategy subvector. For each such τ−C , letting (A,P ) = M(σC t τ−C) and
(A′, P ′) =M(σ′C t τ−C), we have that:
• Ai = ∅ no matter what the coin toss of M comes up.

Thus, to show that τ−C distinguishes σC and σ′C over Σ0, it suffices to show that A′i 6= ∅ when the coin toss of M
comes up Tails. Moreover, we have that:
• for all j ∈ C \ {i}, (Aj , Pj) = (A′j , P

′
j), no matter what the coin toss of M comes up.

Thus due to C’s minimally monotonicity, to show that E[uC(M(σC tτ−C))] < E[uC(M(σ′C tτ−C))], it suffices to prove
that ui(M(σC tτ−C)) = ui(M(σ′C tτ−C)) = 0 when the coin toss ofM comes up Heads, and that ui(M(σC tτ−C)) =
εRi∑
j Rj

< ui(M(σ′C t τ−C)) when the coin toss of M comes up Tails. This proof is analogous to the corresponding one

of Lemma 1, and is ignored.

Lemma 3. ∀ independent player i and ∀ σi ∈ Σ2
i , rev(Ωi) ≥ rev(RKi) (that is, i does not “underbid”).

Proof. We proceed by contradiction. Assume that there exists an independent player i and a strategy σi ∈ Σ2
i such

that rev(Ωi) < rev(RKi). Now consider the following alternative strategy for player i.
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Strategy σ̂i

Stage 1.Announce the outcome Ω̂i = (α̂i, π̂i) = RKi, and
the subset of goods Ŝi = arg maxS⊆G TVi(S).

Stage 3.Announce YES, NO, or the empty string as follows:
If ? = i or α?i = ∅, announce the empty string.
Else, announce YES if TVi(α?i ) ≥ π?i , and
announce NO if TVi(α?i ) < π?i .

We derive a contradiction in two steps, that is by proving two separate claims: namely, (1) σ̂i ∈ Σ1
i , and (2) σi is

distinguishably dominated by σ̂i over Σ1
C for all minimally monotone collusive contexts C compatible with i. The

second fact of course contradicts the assumption that σi ∈ Σ2
i .

Claim 1: σ̂i ∈ Σ1
i .

Proof: Proceeding by contradiction, let σi be a strategy such that σi 6= σ̂i and σi distinguishably dominates σ̂i over
Σ0. Assume that σi announces Ω

i 6= Ω̂i or Si 6= Ŝi, and let σ−i be the subprofile of strategies in which every
player j ∈ −i announces Ωj such that rev(Ωj) = 0 and Sj = ∅ in Stage 1, announces YES in Stage 3 if Ω? = Ω̂i

and S? = Ŝi, and NO otherwise. Notice that σ−i clearly belongs to Σ0
−i. (Indeed Σ0 consists of what all that the

players can do, independent of any rationality consideration.) Notice too however, since rev(RKi) > 0 by hypothesis,
i = ? under the profile σ̂i t σ−i and E[ui(M(σ̂i t σ−i))] = TVi(Ŝi)

2 + εrev(Ω̂i)

2(1+rev(Ω̂i))
> TVi(Ŝi)

2 = maxS⊆G TVi(S)

2 . While

E[ui(M(σi t σ−i))] ≤ TVi(Si)
2 − rev(Ω

i
)

2 + ε·x
2 ≤

maxS⊆G TVi(S)

2 , where x = 1 if rev(Ω
i
) ≥ 1 and x = 0 otherwise.

Therefore such a σi can not dominate σ̂i over Σ0.
Accordingly, if σi dominates σ̂i, it must be that σi announces the same outcome and the same subset of goods as σ̂i

does, and thus coincides with σ̂i in Stage 1. If the coin toss of M comes up Heads, then the final outcomes under the
profiles σ̂itσ−i and σitσ−i are clearly the same, so are ui(M(σ̂itσ−i)) and ui(M(σitσ−i)). Let us now consider the
case when the coin toss ofM comes up Tails and the two executions run into Stage 3. There, Lemma 1 implies that the
only possible difference between σ̂i and a distinguishably dominating σi consists of what the two strategies announce
when i 6= ?, α?i 6= ∅ and TVi(α?i ) = π?i : namely, σ̂i answers YES (by definition) and σi answers NO (because it must be
different from σ̂i). ThereforeM(σ̂i t σ−i) 6=M(σi t σ−i), and σ−i distinguishes σ̂i and σi. But the difference between
the two outcomes does not translate into any utility difference: indeed, both receiving a utility εRi

1+
∑
j Rj

, accepting a
subset of goods and paying what your true valuation for it or receiving no goods at all and paying nothing is equivalent.
Therefore no σi 6= σ̂i can dominate σ̂i over Σ0. In sum, σ̂i ∈ Σ1

i as we want to show. �

Claim 2: For all minimally monotone collusive contexts C compatible with i, σ̂i distinguishably dominates σi over Σ1
C .

Proof: To prove our claim we consider all strategy subprofiles τ−i ∈ Σ1
C\{i}, where C denotes the player partition of C ,

and prove that E[ui(M(σitτ−i))] < E[ui(M(σ̂itτ−i))]. (Notice that this actually implies that σi is strictly dominated
by σ′i over Σ1

C .)
Arbitrarily fixing such a τ−i, denoting by Ωj = (αj , πj) and Ω̂j = (α̂j , π̂j) the outcomes respectively announced

by a player j in the executions of σi t τ−i and σ̂i t τ−i, and by Rj and R̂j the revenue of Ωj and Ω̂j respectively, the
following four simple observations hold.
O1: ∀j ∈ −i, Ωj = Ω̂j and Rj = R̂j .
O2: If i 6= ? in both executions, then the star player is the same in both executions.
O3: If i = ?, then in Stage 3, each player j offered some goods in the outcome announced by player i answers YES if

his true valuation for these goods is greater than his price in such outcome, and NO if it is less.

O4: εRi
1+

∑
j Rj

< εR̂i
1+

∑
j R̂j

.

Indeed, O1 holds because outcomes are announced in Stage 1 where all players act simultaneously without receiving
any information at all from the mechanism M; O2 is an immediate implication of O1; O3 follows from Lemmas 1 and
2, and the fact that i does not belong to any collusive set; and O4 follows from O1, the fact that Ri < rev(RKi) (by
hypothesis), and the fact that R̂i = rev(RKi) (by construction).

To establish that σ̂i distinguishably dominates σi over Σ1
C , we analyze the following four exhaustive cases, again

after arbitrarily fixing τ−i ∈ Σ1
C\{i}.

Case 1: i 6= ? in the execution of σi t τ−i and i 6= ? in the execution of σ̂i t τ−i.
In this case, by observations O1 and O2, α?i = α̂?i and π?i = π̂?i . There are four sub-cases.

17



(a) α?i = ∅. In this sub-case we have E[ui(M(σi t τ−i))] = εRi
2(1+

∑
j Rj)

, E[ui(M(σ̂i t τ−i))] = εR̂i
2(1+

∑
j R̂j)

, and

thus
E[ui(M(σi t τ−i))] < E[ui(M(σ̂i t τ−i))],

according to O4.
(b) α?i 6= ∅ and TVi(α?i ) = π?i . In this sub-case, no matter whether player i answers YES or NO in Stage 3 of

σi, we have E[ui(M(σi t τ−i))] = εRi
2(1+

∑
j Rj)

< εR̂i
2(1+

∑
j R̂j)

= E[ui(M(σ̂i t τ−i))].

(c) α?i 6= ∅ and TVi(α?i ) < π?i . In this sub-case, by Lemma 1, i answers NO in Stage 3 of both executions, and
we have E[ui(M(σi t τ−i))] = εRi

2(1+
∑
j Rj)

< εR̂i
2(1+

∑
j R̂j)

= E[ui(M(σ̂i t τ−i))].

(d) α?i 6= ∅ and TVi(α?i ) > π?i . In this sub-case, by Lemma 1, i answers YES in Stage 3 of both executions, and
we have

E[ui(M(σi t τ−i))] =
TVi(α?i )− π?i + εRi

1+
∑
j Rj

2
<
TVi(α̂?i )− π̂?i + εR̂i

1+
∑
j R̂j

2
= E[ui(M(σ̂i t τ−i))].

In sum, no matter which sub-case applies, Case 1 implies E[ui(M(σi t τ−i))] < E[ui(M(σ̂i t τ−i))].
Case 2: i 6= ? in the execution of σi t τ−i and i = ? in the execution of σ̂i t τ−i.

In this case, let us first prove that E[ui(M(σi t τ−i))] < TVi(Ŝi)
2 + εR̂i

2(1+
∑
j R̂j)

. To this end, we consider the same

four sub-cases as above. Namely,
(a) α?i = ∅. In this sub-case, E[ui(M(σi t τ−i))] = εRi

2(1+
∑
j Rj)

. Therefore, since TVi(Ŝi) ≥ 0 by definition, we

have E[ui(M(σi t τ−i))] ≤ TVi(Ŝi)
2 + εRi

2(1+
∑
j Rj)

.

(b) α?i 6= ∅ and TVi(α?i ) = π?i . In this sub-case, no matter whether player i answers YES or NO in Stage 3, we

also have E[ui(M(σi t τ−i))] = εRi
2(1+

∑
j Rj)

≤ TVi(Ŝi)
2 + εRi

2(1+
∑
j Rj)

.

(c) α?i 6= ∅ and TVi(α?i ) < π?i . In this sub-case, player i answers NO in Stage 3, and thus E[ui(M(σi t τ−i))] =
εRi

2(1+
∑
j Rj)

≤ TVi(Ŝi)
2 + εRi

2(1+
∑
j Rj)

.

(d) α?i 6= ∅ and TVi(α?i ) > π?i . In this sub-case, player i answers YES in Stage 3, causing himself to be assigned the

subset of goods α?i for price π?i . Accordingly E[ui(M(σi t τ−i))] =
TVi(α

?
i )−π?i +

εRi
1+

∑
j Rj

2 ≤
TVi(α

?
i )+

εRi
1+

∑
j Rj

2 ≤
TVi(Ŝi)

2 + εRi
2(1+

∑
j Rj)

. In fact, π?i is always non-negative, and TVi(Ŝi) = maxS⊆G TVi(S).

In sum, no matter which sub-case applies, we have E[ui(M(σi t τ−i))] ≤ TVi(Ŝi)
2 + εRi

2(1+
∑
j Rj)

. Since εRi
2(1+

∑
j Rj)

<

εR̂i
2(1+

∑
j R̂j)

, we have that

E[ui(M(σi t τ−i))] <
TVi(Ŝi)

2
+

εR̂i

2(1 +
∑
j R̂j)

.

Let us now prove that TVi(Ŝi)
2 + εR̂i

2(1+
∑
j R̂j)

= E[ui(M(σ̂itτ−i))]. In this case, i’s expected utility in the execution

of σ̂i t τ−i is the weighted sum of his utility when M’s coin toss is Heads and his utility when M’s coin toss is
Tails.16 Therefore, denoting by “

∑
j:N̂O

” the sum taken over every player j who answers NO in Stage 3 of the
execution of σ̂i t τ−i (that is, M’s coin toss comes up Tails), we have

E[ui(M(σ̂i t τ−i))]

=
TVi(Ŝi)

2
+
−

∑
j:N̂O

π̂ij + εR̂i
1+

∑
j R̂j

2

By definition of RKi and compatibility, ∀j ∈ −i such that α̂ij 6= ∅, π̂ij < TVj(α̂ij). Thus by observation O3 every
such player j answers YES in Stage 3: in our notation

∑
j:N̂O

π̂ij = 0. Accordingly, we have

E[ui(M(σ̂i t τ−i))] =
TVi(Ŝi)

2
+

εR̂i

2(1 +
∑
j R̂j)

16Both individual utilities are expected, if the strategies of the other players are probabilistic.
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as desired.
Therefore Case 2 implies

E[ui(M(σi t τ−i))] < E[ui(M(σ̂i t τ−i))].

Case 3: i = ? in the execution of σi t τ−i and i = ? in the execution of σ̂i t τ−i.
In this case, similar to Case 2, i’s expected utility in the execution of σi t τ−i is the weighted sum of his utility
when M’s coin toss is Heads and his utility when M’s coin toss is Tails. Therefore, similar to Case 2, denoting
by “

∑
j:NO” the sum taken over every player j who answers NO in Stage 3 of the execution of σi t τ−i, we have

E[ui(M(σi t τ−i))]

=
TVi(Si)

2
+
−

∑
j:NO π

i
j + εRi

1+
∑
j Rj

2

Since
∑
j:NO π

i
j ≥ 0, we have that

E[ui(M(σi t τ−i))] ≤
TVi(Si)

2
+

εRi
2(1 +

∑
j Rj)

Let us now analyze i’s expected utility in the execution of σ̂i t τ−i. Same as in Case 2, and by observation O3,
we have that

E[ui(M(σ̂i t τ−i))] =
TVi(Ŝi)

2
+

εR̂i

2(1 +
∑
j R̂j)

According to our construction of σ̂i, we have that TVi(Ŝi) = maxS⊆G TVi(S). Therefore by O4,

E[ui(M(σ̂i t τ−i))] >
TVi(Si)

2
+

εR̂i

2(1 +
∑
j R̂j)

>
TVi(Si)

2
+

εRi
2(1 +

∑
j Rj)

.

In sum, Case 3 implies
E[ui(M(σi t τ−i))] < E[ui(M(σ̂i t τ−i))].

Case 4: i = ? in the execution of σi t τ−i and i 6= ? in the execution of σ̂i t τ−i.
Fortunately, this case can never happen. Since rev(Ω̂i) > rev(Ωi) (by construction) and ∀j ∈ −i Ωj = Ω̂j (by
observation O1), we have that if i = ? in the execution of σi t τ−i, it must be true that i = ? also in the execution
of σ̂i t τ−i.

Having finished to analyze all possible cases, we conclude that σi is distinguishably dominated by σ̂i over Σ1
C . �

Since both Claims 1 and 2 hold, so does Lemma 3.
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